Divisibility Tests

2 Any number which ends in 2, 4, 6, 8 or 0 is divisible by 2 . e.g. the numbers $36,80,104,682$ are all divisible by 2 .

Find the digit sum of the number. If the sum is divisible by
33 , then so is the original number.
e.g. $144->1+4+4=9$. 9 is divisible by 3 , so 144 will also be divisible by 3 .

If the last two digits of the number are divisible by 4, then
4 the number will be divisible by 4 .
e.g. $187 \underline{2} 4$ is divisible by 4 because 24 is divisible by 4 .

- A number is divisible by 5 if it ends in 5 or 0 .
e.g. the numbers $55,70,85,905,13025$ are all divisible by 5 .

A number is divisible by 10 if it ends in 0 .
10 e.g. the numbers $20,30,50,80,200$ are all divisible by 10 .

A number is divisible by 100 if it ends in 00 .
100 e.g. the numbers $300,400,600,8500,1823900$ are all divisible by 100 .

Bronze

1) Circle the numbers below that divide by 2 :
$\begin{array}{llllllllll}4 & 3 & 67 & 42 & 93 & 65 & 24 & 86 & 102 & 50\end{array}$
2) Circle the numbers below that divide by 5 : $\begin{array}{llllllllll}90 & 27 & 15 & 32 & 65 & 97 & 90 & 25 & 30 & 33\end{array}$
3) Circle the numbers below that divide by 10 :
$\begin{array}{llllllllll}80 & 30 & 32 & 46 & 70 & 100 & 102 & 130 & 500 & 78\end{array}$

Silver

Use divisibility tests to find out if the following numbers divide by $2,3,4,5,10$ or 100.

1) 34
2) 70
3) 45
4) 96
5) 68
6) 120
7) 3400
8) 450

Gold

1) Continue the patterns. What do you notice?
a) $2 \times 9=18$
$1+8=9$
b) $1520 \times 8=12160$
$3 \times 9=27 \quad 2+7=\ldots$ $1521 \times 8=12168$
$4 \times 9=$... $1522 \times 8=$...
2) Write down your 6 times table up to 12×6. Use divisibility tests to find out what each product can be divided by.
e.g. $2 \times 6=12 \quad$ This is divisible by 2, 3, 4 and 6.

What do you notice?
Can you come up with a rule for divisibility by 6 ?

